On principally generated quantaloid-modules in general, and skew local homeomorphisms in particular

نویسندگان

  • Hans Heymans
  • Isar Stubbe
چکیده

Ordered sheaves on a small quantaloid Q have been defined in terms of Qenriched categorical structures; they form a locally ordered category Ord(Q). The free-cocompletion KZ-doctrine on Ord(Q) has Mod(Q), the quantaloid of Q-modules, as category of Eilenberg-Moore algebras. In this paper we give an intrinsic description of the Kleisli algebras: we call them the locally principally generated Q-modules. We deduce that Ord(Q) is biequivalent to the 2-category of locally principally generated Q-modules and left adjoint module morphisms. The example of locally principally generated modules on a locale X is worked out in full detail: relating X-modules to objects of the slice category Loc/X , we show that ordered sheaves on X correspond with skew local homeomorphisms into X (like sheaves on X correspond with local homeomorphisms into X).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 8 On principally generated Q - modules in general , and skew local homeomorphisms in particular

Ordered sheaves on a small quantaloid Q have been defined in terms of Q-enriched categorical structures; they form a locally ordered category Ord(Q). It has previously been shown by the second author that the " free-cocompletion " KZ-doctrine on Ord(Q) has Mod(Q), the quantaloid of Q-modules, as category of Eilenberg-Moore algebras. In the first part of this paper we apply Q-enriched category t...

متن کامل

On skew Armendariz and skew quasi-Armendariz modules

Let $alpha$ be an endomorphism and $delta$ an $alpha$-derivationof a ring $R$.  In this paper we  study the relationship between an$R$-module $M_R$ and the  general polynomial module  $M[x]$ over theskew polynomial ring $R[x;alpha,delta]$. We introduce the notionsof skew-Armendariz modules and skew quasi-Armendariz modules whichare generalizations of $alpha$-Armendariz modules and extend thecla...

متن کامل

ON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS

Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...

متن کامل

On quasi-baer modules

Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.

متن کامل

On Rickart modules

Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=$ End$_R(M)$. The module $M$ is called {it Rickart} if for any $fin S$, $r_M(f)=Se$ for some $e^2=ein S$. We prove that some results of principally projective rings and Baer modules can be extended to Rickart modules for this general settings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2009